潜油永磁同步电机的控制方法
目前常用于永磁同步电机的控制策略主要是磁场定向矢量控制(VC)和直接转矩控制(DTC)。
1 矢量控制方法
磁场定向矢量控制首先应用于异步电机中,这之后被引入到永磁同步电机的控制中。矢量控制的基本思想就是模仿直流电机的磁场定向过程。因为异步电动机在矢量控制系统中一般采用转子磁链定向,因此需要知道电机转子准确的空间角度,这是通过电子方式而不是通过类似直流电机那样的机械方式获得的。
永磁同步电机的模型可以很方便的在随永磁转子而旋转的转子坐标系(d-q轴)中表示。永磁同步电机的矢量控制通常被称作 =0控制,这是因为此种控制方式能使永磁同步电机的磁阻转矩为零,电磁转矩直接与q轴定子电流 成正比的缘故。因而通过定子电流的控制使线性的单闭环转矩控制成为可能。
然而矢量控制并不是适用于所有的永磁同步电机。永磁同步电机的气隙磁链会因电枢反应而受到电机电流和电感所产生的磁链影响。如果电机的磁路不对称,还会产生磁阻转矩。交、直轴磁通通路的差异会导致其电感的不同。如果永磁体安装于转子表面,由于永磁体的磁导率近似于空气,因此有效气隙非常大。大气隙下电感非常小且交、直轴电感近似相等。
如果永磁体埋于转子内部,则永磁磁路大不相同。交轴磁链通常不通过永磁体,通常使得q轴电感大于d轴电感。因此矢量控制更适合于面贴式永磁同步电机。
矢量控制的优点是转矩响应快,精确的速度控制,零速时可实现全负载运行,进而可获得类似于直流电机的工作特性。但是为得到高性能的转矩和速度控制,必须设置位置传感器,这不仅增加了系统的造价,同时也使通常简单的交流电机驱动系统结构变得复杂,特别是传感器如随电机放入油井中,其通讯、供电及稳定性都有待考察。
另外调制方式的使用也使电机输入信号和输出信号之间通讯变得较为复杂。因此与直流电机驱动方式比较,这种控制方式电机结构简单但是控制系统复杂。ABB厂家具有矢量控制功能的变频器(如:ACS550系列),不推荐使用此种控制模式控制永磁同步电机。
2 直接转矩控制(DTC)
另一种用于永磁同步电机的控制策略就是直接转矩控制(DTC):此种控制策略首先在上世纪80年代由2名西班牙人提出并发表在德国刊物上。1996年ABB公司宣布了第一个工业应用之后,直接转矩控制(DTC)得到了普遍的重视。之后DTC控制方面用于异步电动机的文献发表了不少,在1997年才有研究者发表了将DTC控制用于永磁同步电机的文章。
直接转矩控制(DTC)的主要原理是不采用电流控制而通过选择合适的电压空间矢量来直接控制电机的定子磁链和转矩。空间电压矢量是根据两个转矩、磁链滞缓控制器的输出信号以及定子磁链矢量的位置信号从预定的最优先开关表中选择出来的。
潜油永磁同步电机由于安装于井下1000m深处,工作环境恶劣,位置或速度传感器的使用有着非常大的困难,此外也增加了控制系统的成本。因此无速度传感器的直接转矩控制应运而生。
潜油永磁同步电机的主要无速度传感器方法可以分为以下几类:
基于反电势和磁链的位置速度估计器;
基于观测器的位置速度估计器(卡尔曼滤波器、龙伯格观测器、模型参考自适应和滑模观测器);
基于集合和饱和效应引起的电感变化的估计器;
基于定子三相谐波的估计器;
基于智能控制器(模糊逻辑、神经网络和遗传算法)的估计器。